If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10-16x-4x^2=0
a = -4; b = -16; c = +10;
Δ = b2-4ac
Δ = -162-4·(-4)·10
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{26}}{2*-4}=\frac{16-4\sqrt{26}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{26}}{2*-4}=\frac{16+4\sqrt{26}}{-8} $
| 5(y+7)=40 | | (0,125)^5-x=4^x^2-5x | | 2(w+1)=14 | | 5e+3=2e+15 | | 3x+2x-48=562 | | 7k−5k=10 | | 4x+7=-5x+9 | | -11+3x=-21+7x | | 9/7r-21=14/7r | | (2n+1)-30=0 | | 10-(2x+1)=3 | | a^2+2a=10 | | 1/3z=14 | | 7x=61+2x | | 8(2n+1)=6(5n+9)+8 | | ((x+3)/10)+((x-2)/5)=2 | | ((x+3)/2)+((x+1)/4)=10 | | -0,2+1,2=4,8+0,4x | | (x+1)/(x+4)=3 | | (x+11)/(2x-5)=2 | | (2x-1)/(x+3)=9 | | 1/4(8g-12)=7-2g | | 8(p+10)+7=9 | | 10z-9z-9=0 | | |x^2+9x|=|x^2-2x| | | (3x+5)+(x+15)=180 | | (x-5)*(x+5)=80 | | 55/34=(15/17)x | | 13x+4,5=2x+76 | | 55/34=15/17x | | |6x+2|=8 | | 3x+4(x+3)=78 |